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SUMMARY 

The application of the window diagram technique to the optimization of the 
relative length of serially coupled binary capillary columns has recently been at- 
tempted. However, no proper account was taken of the effects of carrier gas com- 
pressibility, empirical means being relied upon in the final optimization. We show 
here that compressibility effects can in fact be quantitatively accounted for. The 
strategy for optimization and relevant equations are derived for the general use of 
differing phase ratios and inner diameters of the column sections, as well as for certain 
special cases of relevance to the aforementioned recently published work. 

INTRODUCTION 

The method of window analysis optimization of chromatographic separation, 
initiated by Laub and PurnellL, has subsequently been extended widely by Laub, 
Purnell, Williams and their collaborators (e.g., ref. 2). This development initially 
concentrated on packed columns, for either gas or liquid chromatography, and in- 
cluded accounts of the application of the technique to optimizing the choice of mul- 
ti-substrate systems, column temperature, eluent pH, etc. Insofar as multi-substrate 
operation was concerned these workers, recognizing the effect of carrier gas com- 
pressibility on relative retention, eschewed the use of serially connected packed col- 
umns and strongly advocated mechanical mixing of the various packing materials in 
a single column such that each experienced exactly the same pressure regime. How- 
ever, in a relatively recent publication, Purnell et aL3 described the application of the 
window method to the optimization of multi-capillary column systems, which are 
most conveniently operated serially. To obviate the difficulty alluded to above, these 
workers employed very short lengths of capillary such that the pressure drop was 
trivial, no concern for compressibility effects would then be needed and it was un- 
important in which order columns were connected. The results were entirely con- 
sistent with prediction. 

Recently, Ingraham et a1.4 and Takeoka et aLS have also attempted to employ 
window analysis to optimize serially connected capillary column systems. They con- 
cluded that window analysis provided a useful, but no more than first-approximation 
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result, so that subsequent empirical adjustment of column lengths was required. As 
we have pointed out elsewhere6, this conclusion is incorrect, being founded on an 
erroneous derivation, disregard of the carrier compressibility effect and, finally, the 
use in some experimental tests of columns of unequal diameter, a factor that com- 
plicates the theory and practice still further. 

In the light of the above situation, it seems worthwhile to present the correct 
theory and to show that window analysis then provides precise information regarding 
serial capillary column optimisation. In presenting this theory we deal first with the 
situation where compressibility effects are ignored and column diameters are equal. 
This is the model adopted by Jennings and his colleagues and this analysis, accom- 
panied by extension to the case where diameters are unequal, allows a direct assess- 
ment of the extent of error in their treatment. We then discuss briefly the case of 
columns of equal diameter but subject to compressibility effects in order to show that 
our approach is entirely consistent with the corresponding early development by 
Hildebrand and Reilley’ recapitulated later by Buys and Smuts8. Finally, we treat 
the general case where diameters, pressure drops and film thicknesses are all variables. 
This treatment provides a basis for detailed evaluation of the data of Jennings and 
his collaborators, which can then be shown to be in excellent accord with theoretical 
prediction. 

CASE A. NO CARRIER GAS COMPRESSIBILITY EFFECT 

Columns of equal inner diameter 
Let us assume that the volume of liquid phase is negligible in comparison with 

that of the mobile phase, i.e., that phase ratios (8) are very large. Then, for a dual- 
column system, F (inlet end) followed by B (outlet end), the mobile phase volume 
(V,,) in column F is given by 

where FM is the mobile phase volume per unit length, which is the same for both 
columns. Correspondingly, the liquid phase volume (V,) is 

or 

VF = VMFiBF = ~MLF/h (2) 

LF = VFbF/rM (3) 

and, for column B, 

LB = vBbB/~hi (4) 

The volume fraction ((PF) of liquid F in the composite system is 

(PF = vF/(vF + VB) 
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whence 

and so, the length fraction, e.g., & = &/(LF + LB), is 

qF = IF/&3 + lB/?F 
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(5) 

(6) 

The overall phase ratio (p) is defined as the total mobile phase volume/total liquid 
phase volume, i.e., 

and so 

By appropriate substitution from eqn. 6 into eqn. 8, it then follows that 

B = (PFPF + (PBPB (9) 

As carrier gas compressibility effects are ignored, we can now identify the overall 
partition coefficient (KR) unambiguously in terms of the liquid volume fractions, and 
the relevant values of KR for pure F and B, via 

and as the capacity factor k’ = f&//3, substituting for (PF and (PB and replacing KR 
by the appropriate k’ yields 

k’ = i,k;: + I,& (11) 

Ingraham et al4 employed this model only and, in conclusion, commented adversely 
on our use of eqn. 11 when we presented the first example of optimization of length 
fraction of coupled capillaries 3. First we should note that, unhappily, these workers 
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perpetrated an algebraic error in going from eqn. 7 to 8 and represented eqn. 8 as 

B = lFBF + MB 

which is true only when fiF = PB, which, as the diameters are equal, so too must be 
the film thicknesses. Thus, their general equation for Z, is wrong, a matter of some 
consequence as in their experiments film thicknesses differed by a factor of four. 

In our initial example3 the column diameters were, in fact, identical and the 
composite column was so permeable to flow that the pressure drop was trivial. Thus, 
eqn. 11 does apply and in this particular situation it is valid to carry out window 
analysis via length fractions, i.e., eqn. 11, as we did. 

Columns of unequal diameter but equal$im thickness 
Jennings and his later co-workers4 actually carried out their attempted window 

analysis with such columns. Therefore, it is valid to assess the errors that will arise, 
even without taking account of the compressibility correction. 

Again we assume that the liquid phase volume is small relative to that of the 
mobile phase and so, generally, mobile phase volume = Lw* and liquid phase vol- 
ume = 27~ L d, where r is the internal column radius and d is the liquid film thickness. 
Thus, the overall phase ratio is 

and 

VM = XT2 = 47&P 

For column F, therefore, 

(12) 

V MF = 471&_& 

and 

v, = h&&LF 

with corresponding equations for column B. 
Now, as we have equal film thickness, for F and B, eqn. 13 leads to 

(13) 

IF = LF/(LF + LB) = (VF/BF)/[( VFIBF) + Cl/elBdl 

In other words, 

1, = 
(PFPB + (PBBF 

(14) 

or 

(PF = IFBF + lBfiB 
(15) 
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Eqns. 13 and 15 then lead to 

B = V&F + (PBBB (16) 

exactly as derived for the first model. 
Appropriate substitutions as those in going from eqn. 10 to eqn. 11 then gives 

(17) 

in considerable contrast with eqn. 11 and emphasizing the error introduced by as- 
suming in theory that rF = r& when it is not the case in practice. Indeed, even before 
attempting to include a compressibility correction we see that there is no simple 
relationship between IF and the various k’. Even allowing that compressibility cor- 
rections were negligible it is, therefore, clear that failure to use eqn. 17 would lead 
to gross error in the evaluation of k’ and thus of IF via the window analysis procedure. 

CASE B. INCLUSION OF THE GAS COMPRESSIBILITY EFFECT 

Columns of the same diameter 
This particular problem was first addressed in 1964 by Hildebrand and Reilley’ 

and later by Buys and Smuts8. We have shown elsewhere6 a simplified and assump- 
tion free-treatment which leads to the same basic result as obtained by these earlier 
workers, that is, for a given solute, 

(18) 

where 

p _ bF _ d - P3 _ PjBlF 

tdB P3 - PO3 P~F~B 
(19) 

and pi, p and p. are the prevailing pressures at the inlet, the junction and outlet, 
respectively, jF and jB are the James-Martin compressibility factors over columns F 
and B and tdF and f&r are the dead times for the columns. 

As a consequence of eqn. 18, the relative retention of a solute pair (X, Y) is 

(20) 

from which it can be seen that relative retention depends in practice on whether 
column F or column B is at the inlet end. A numerical illustration of the extent of 
variation in a was given elsewhere6. 

Thus, in attempting optimization of values of IF it is insufficient to know only 
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kr and k;, but also imperative to define the sequence of the columns as they are to 
be used in experiment. 

We now extend earlier work to show how the actual value of IF is related to 
pressure drops in the system. 

It is self-evident from eqn. 18 that, when the pressure drop is significant, we 
can no longer express k’ in terms of lF and lB as in eqn. 11 but, rather, as 

and, correspondingly, 

KR = d&i(F) + &&&3, (22) 

where the newly primed quantities represent “effective” length fractions and volume 
fractions where 

& = P/(P + 1) (23) 

or 

P = &/(l - E;;) (24) 

and where cp; and I;; are related thus (cf-, eqns. 6 and 7): 

The linear relationships described by eqns. 21 and 22, and later eqn. 33, permit the 
direct application of window diagram optimization, and are introduced with this sole 
purpose in mind. 

From eqn. 24 and the earlier definition of P, we then have 

(p: - p3>/(p3 - PO”> = k/(1 - I;;) 

whence 

However, for a column of constant diameter, we know also9 that the pressure, p, at 
any point of fractional distance IF from the inlet, is given by 
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Hence, 

Zr can thereby be calculated for some optimum I; and any experimental pressure 
data. 

Thus, for columns of equal diameter with a significant pressure drop, the means 
of exploiting window analysis quantitatively are at hand. The contrast between this 
result and that where compressibility was ignored is sufficiently clear to establish that 
Jennings and co-workers could not possibly have achieved a reasonable window 
optimization. 

CASE C 

The general case 
The three models dealt with up to this point will each be met with in practice 

but, of course, represent particular aspects of the general case. We now present the 
general model from which solutions for particular models can be derived. 

Again we take columns F and B, operating over the pressure ranges pi to p 
and p to po. Let them have internal radii rF and Y B, and the viscosity of the carrier 
be q. Then, from the Poiseuille equation, the outlet velocity is given by 

l-2 Pi" - Pit 
24, = - ( > 16?L PO 

Let the relevant velocities at the various points be aFir UFO, uai and r&&o. Then, as mass 
flow-rate is constant throughout the system, 

Since, in addition, as shown above, we can set 

&I$ - P2) 
UFO = 

~QLF P 

and 

rib” - PO') 
UBO = 

l@LB PO 

constancy of mass flow demands that 

(27) 
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i.e., 

pz = d - IF bf - (rdrF)4p3 
i 1 - IF [l - (rB/rF)41 I 

The dead times in the two column sections are 

tdF = LFIiiF = LF/~FUF~ = 

and 

tdB = LB/&3 = h3ljBuBo 

and then, introducing eqn. 27, we obtain 
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(28) 

(29) 

Thus, 

k’= 
td&; + b&b P'k; + k;, 

tdF + tdB = p’+1 (30) 

where 

(31) 

Eqns. 30 and 31 are the analogues of eqns. 18 and 19 and, indeed, when rp = rB, 
reduce to these. 

Correspondingly, in analogy with eqn. 20, 

It is again evident that the experimental value of a for any pair is very much depen- 
dent on the sequence in which the columns are used. Thus, u for any solute pair 
eluted in the mode FB may differ very significantly from the corresponding a observed 
in elution in the mode BF. 
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Finally, let us set 

k’ = fFk; + fBk;l 

where fF + fn = 1. From eqn. 30, we then derive the results 

fF = P’/(P’ + 1) and P’ = fF/(l - fr) 

and eqn. 31, in turn, leads to the result 

P 3= 

or 

p3 = 

1 -fF[l - ($] 
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(33) 

Finally, setting mass flows at the column outlets equal (cJ, eqn. 27) leads eventually 
to 

1F = 
P2 - PZ 

pf - p2 + ‘B 0 4 (P2 - PO'> rF 

(35) 

When rg = rr, eqns. 34 and 35 reduce to the corresponding equations derived in the 
last section. 

A true optimization of column length fractions now becomes apparent. A win- 
dow analysis dependent on the linear relationship expressed by eqn. 33 will indicate 
the optimum fF. Hence p can then be calculated for some overall pressure drop via 
equation 34. The optimum true length fraction 1, is then obtainable through use of 
eqn. 35. The theory presented is quantitative so long as the phase ratios are large and 
the carrier gas behaviour approaches ideal. 
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